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Abstract 

 
Recent works have shown that the geometric constraint can be harnessed to boost the 
performance of CNN-based camera localization. However, the existing strategies are limited 
to imposing image-level constraint between pose pairs, which is weak and coarse-gained. In 
this paper, we introduce a pixel-level epipolar geometry constraint to vanilla localization 
framework without the ground-truth 3D information. Dubbed EpiLoc, our method establishes 
the geometric relationship between pixels in different images by utilizing the epipolar 
geometry thus forcing the network to regress more accurate poses. We also propose a variant 
called EpiSingle to cope with non-sequential training images, which can construct the epipolar 
geometry constraint based on a single image in a self-supervised manner. Extensive 
experiments on the public indoor 7Scenes and outdoor RobotCar datasets show that the 
proposed pixel-level constraint is valuable, and helps our EpiLoc achieve state-of-the-art 
results in the end-to-end camera localization task.  
 
 
Keywords: Camera localization, End-to-end, Epipolar geometry, Pixel-level constraint. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 6, June 2022                                   2045 

1. Introduction 

Camera localization that recovers the 3D translation and rotation from a single image is one 
of the fundamental tasks in a wide variety of applications, e.g., autonomous driving, robotics, 
and augmented reality. Camera localization has been studied for decades and a number of 
structure-based approaches have been proposed [19],[24],[26],[23]. Generally, these structure-
based methods rely on a sparse map consisting of the 2D keypoints of query images, the 3D 
points, as well as the visible relationship between them. In the general pipeline, the matches 
between 2D and 3D points are established by comparing their descriptors, then the set of 2D-
3D correspondences will be used to recover the poses of the query image by a Perspective-n-
Point solver in a RANSAC loop [8]. By leveraging 3D information or geometry of the scene, 
the structure-based methods can yield precise poses, but at a price of large memory footprint 
and computational cost. 

Motivated by the success of deep learning in a variety of computer vision tasks, such as 
image classification [21],[28], object detection [27],[32], and semantic segmentation [39],[2], 
researchers are taking step towards exploiting Deep Neural Networks (DNNs) or Recurrent 
Neural Networks (RNNs) to regress global poses in an end-to-end supervised manner. The 
seminal PoseNet [16] enables us to directly regress the absolute pose from one image with a 
simpler pipeline, shorter inference times, and lower memory footprint than structure-based 
methods but resulting in larger localization error in both indoor and outdoor scenarios. One 
possible cause of performance degradation is the lack of geometric information during the 
network training. To overcome this drawback, MapNet [3] proposes a geometry-aware 
learning paradigm, additionally enforcing geometric constraint between pose predictions for 
image pairs. Although achieving better results, the image-level geometric constraint between 
poses can be only regarded as coarse-grained supervision, while other stronger geometric 
constraint is not guaranteed to be considered in MapNet [3].  

 
(a) The epipolar geometry                         (b) Minimizing epipolar distance 

 
Fig. 1. The epipolar geometry constraint between input images I1 and I2 restricts the corresponding 

pixel p2 of a query pixel p1 to fall on its epipolar line I2. Such constraint is often unsatisfied due to the 
inaccurately estimated pose and its derived fundamental matrix F’. Our proposed EpiLoc reinforces 

such pixel-level constraint by minimizing the point-to-line distance d’ between p2 and p’2. The 
optimized fundamental matrix F* can yield a smaller point-to-line distance d*, indicating a more 

accurate camera pose that conforms with the epipolar geometry constraint. 
 

In this paper, we propose to capitalize on a finer-grained geometric constraint as tailored 
supervision for the camera localization task. Specifically, we consider the epipolar geometric 
relationships between pixels as the constraint, where the corresponding pixel of a query pixel 
is supposed to fall on its epipolar line accordingly. However, such relationship can only be 
satisfied if the relative pose between images is accurately estimated. It motivates our proposed 
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EpiLoc to employ the epipolar geometric constraint as novel pixel-level supervision on the 
localization network. In a sequential data scenario, the pixel correspondences between images 
could be obtained by optical flow [13],[6], while the relative pose between images is derived 
from the estimated absolute pose of EpiLoc, as shown in Fig. 1. In order to apply our method 
to the non-sequential data scenario, we additionally propose EpiSingle which can construct 
the epipolar geometry constraint based on a single image in a self-supervised manner. 
EpiSingle computes the epipolar constraint between the estimated and ground truth pose of a 
single image without access to the corresponding relationship of pixels, which further boosts 
the applicability of EpiLoc. The main contributions of our paper are summarised as follows: 
 Different from the coarse motion-geometry constraint used by previous methods, 

EpiLoc establishes the geometric relationship between pixels without the 3D model, 
which is a finer-grained geometric constraint and makes our model achieve accurate 
and robust pose estimation. 

 As an extension of EpiLoc, we design EpiSingle for the non-sequential data scenario. 
EpiSingle computes the epipolar constraint between the estimated and ground truth 
pose of a single image without access to the corresponding relationship of pixels, which 
further boosts the applicability of EpiLoc. 

 Extensive experiments on both indoor and outdoor datasets show the state-of-the-art 
results of our proposed method in the end-to-end camera localization task, which 
proves the effectiveness of epipolar geometric constraint. 

The rest of the paper is structured as follows. Sec. 2 introduces the related work. Sec. 3 
describes the epipolar geometry and the fundamental matrix. The details of our EpiLoc and 
EpiSingle are provided in Sec. 4. We show the experimental results in Sec. 5 and conclude in 
Sec. 6. 

2. Related work 

2.1 DNN-based camera localization in an end-to-end fashion 
Recently, researchers leveraged DNN to recover camera pose directly from one image or 
multiple images. The pipeline of depth camera localization is simple and the inference times 
are short compared to the structure-based approach. The seminal DNN-based camera 
localization in an end-to-end fashion, PoseNet [16], is realized by a truncated GoogLeNet [27] 
followed by three FC layers. Some works improve localization accuracy by estimating the 
uncertainty of the predicted pose with Bayesian CNN [14] or replacing the encoder block with 
ResNet34 [22]. Some researchers proposed to utilize LSTM to spatially [30] and temporally 
[5] reduce localization errors. Kendall et al. [15] proposed to learn the weight between the 
translation and orientation loss and introduced a geometric reprojection error through 3D 
points. Moreover, the self-attention module is added to the pipeline and achieves good results 
[12],[21]. 

In addition to taking a single image as input as mentioned earlier, the researchers also 
proposed using multiple images [5],[3],[34]. MapNet [3] adds additional motion constraint i.e. 
relative pose between image pairs during training. LSG [34] adopts a convolutional LSTM 
[33] for an extra visual odometry estimation and employs a soft attention mechanism to 
remedy the finite capacity of recurrent units. Both of these works introduce coarse geometric 
information through motion constraints. In contrast, our work imposes the epipolar constraint 
on adjacent images to ensure that geometric constraint is satisfied between pixels of different 
images. 
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Fig. 2. Training pipeline of the Epi-architecture.  

g2R and RelPose are the data processing functions, where g2R converts the logarithm of quaternion 
into a rotation matrix, and RelPose calculates the relative pose. K is the camera internal parameters. 

EpiLoc takes adjacent frames and the optical flow OFj,j+1 as input. EpiSingle takes one image as input.  

2.2 Epipolar geometry as an additional constraint 
The epipolar geometry constraint is the constraint between the pixels of two views, without 
the need for 3D structures. So many researchers leveraged the epipolar constraint on their tasks 
to achieve better results, such as 3D human pose estimation [18], depth estimation [38],[9],[36], 
neural rendering [29], keypoint detection [35], optical flow [37]. GLNet [4] is a system that 
combines multiple tasks, including depth estimation, optical flow, camera pose, and intrinsic 
parameters, which uses epipolar constraint to constrain the output of pose and optical flow 
modules and achieves a considerable performance gain. The pose modules of GLNet [4] output 
the relative pose of two images, but our work focuses on the end-to-end camera localization 
task, which regresses the absolute pose of a given image. 

3. Preliminaries 

3.1 Epipolar geometry 
The epipolar geometry is the intrinsic projective geometry between two views, which is 
independent of the scene geometry structure but depends on the camera's internal parameters 
and relative pose [10]. As described in Fig. 1, the epipolar geometry constraint between two 
views I1 and I2 is expressed mathematically by the fundamental matrix F, which is a 3x3 
matrix with rank 2.  To be specific, all corresponding pixels p1, p2 ( p1∈I1,  p2∈I2 ) satisfy the 
relation pT

2 Fp1 = 0. In our work, the pixel correspondences between adjacent frames are 
obtained by Flownet2 [13], which are accurate and dense. 

3.2 The fundamental matrix 
Given the rotation matrix Ri, the camera center Oi, the camera internal Ki for image Ii, and the 
corresponding Rj, Oj and Kj for image Ij. Note that R is the rotation matrix from world to 
camera coordinates. The relative rotation and translation from image Ii to Ij are Rji = RjR-1

i, tji 
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= Rj(Oi-Oj). The fundamental matrix Fji from image Ii to Ij could be calculated by: 
1T

ji j ji ji iF K t R K
∧− − =                                                 (1) 

where [·]^ is a skew-symmetric symbol, which can transform a 3d vector into a skew-
symmetric matrix. Our network takes a monocular sequence of images as input, so all images 
share the same camera parameters, that is, Kj = Ki.  

4. Preliminaries 
In this section, we introduce EpiLoc and EpiSingle in detail. The training pipeline of the Epi-
architecture is illustrated in Fig. 2. Our method leverages a common depth camera localization 
architecture in Sec. 4.1. We constrain the network with the absolute pose and the relative pose, 
which is described in Sec. 4.2. The epipolar geometry constraint is formulated as loss terms in 
Sec. 4.3. EpiSingle is presented in Sec. 4.4.  

4.1 Camera pose regression 
The DNN of EpiLoc consists of an encoder block, a localizer block, and a regressor block. 
The encoder block accepts images as input and extracts features. We employ ResNet34 [11] 
as the encoder block and obtain the output feature map of the last convolution layer, and then 
followed by a global average pooling layer. The new feature map will be reshaped and 
forwarded to the localizer block, a 2048-d FC layer, and a ReLU layer and dropout layer with 
p = 0.5. The regressor block is two separate 3-d FC layers for regressing translation and 
rotation, respectively. Instead of using a 4-d FC layer to restore unit quaternion 
[16],[14],[22],[30], we follow MapNet [3] to restore the logarithm of a unit quaternion (log q) 
[1]. g = log q is a 3-d vector, which is not over-parameterized. Because the rotation matrix is 
necessary for the epipolar constrains, we will convert the output g of EpiLoc to a rotation 
matrix R during training. 

Given the quaternion q, the logarithm of the quaternion g and the rotation matrix R, where 
q = (w,v)  is a unit quaternion, w is the real part of q, v = (x,y,z) is its imaginary part, the 
conversions between them can be calculated by: 

From q = (w,v) to g:  
1cos  0

0

v w if v
vg

otherwise

− ≠= 



                                        (2)  

From g to q:  

(cos , sin )gq g g
g

=                                              (3) 

From q=(w,x,y,z) to R:  
2 2

2 2

2 2

1 2 2 2 2 2 2
2 2 1 2 2 2 2
2xz + 2wy 2yz - 2wx 1 2 2

y z xy wz xz wy
R xy wz x z yz wx

x y

 − − + −
 = − − − + 
 − − 

                        (4) 
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4.2 Joint learning of pose 
In prior works [16],[14],[22],[30],[15],[12],[31],[5],[3],[34], the training loss of rotation is the 
regression norm, L1 = || · ||1 or L2 = || · ||2. Especially, it is noted that the L1 norm performed 
better [15], but we find that the orientation error between two rotation matrices is more suitable 
for the epipolar constraint, which can be computed by AE( )⋅ : 

1
1 1 2

1 2
trace( ) 1180AE( , ) cos ( )

2
R RR R

π

−
− −

=                                 (5) 

As our network takes adjacent images as input, EpiLoc minimizes the loss of the absolute 
pose for each image as well as the loss of relative pose between adjacent images during training, 
similar to previous works [5],[3],[34]. Given the adjacent images Ii where I = j , j+1 and their 
ground truth poses (

ît , ˆ
iR ) represented by the translation 

ît  and the rotation matrix ˆ
iR , the 

corresponding estimated pose of EpiLoc is (ti , gi).  gi will be converted to rotation matrix Ri. 
The losses of joint learning of pose are defined as: 

1
11

ˆˆ AE( , )abs i i i iL t t e R R e γβ β γ−−= − + + +                                (6) 
2

21
ˆˆ AE( , )rel r r r rL t t e R R e γβ β γ−−= − + + +                               (7) 

where tr = tj – tj+1 and Rr = Rj+1 R-1
j are the relative translation and rotation. β , 1γ  and 2γ  

are learnable weights used to balance the translation loss and rotation loss. 

4.3 Constraint of epipolar geometry 
The core of our work is to establish the epipolar geometry constraint through the known 
camera internal parameters, the pixel correspondence generated by Flownet2 [13], and the 
camera pose estimated by EpiLoc, to constrain geometric relationships on pixels. To be 
specific, we should minimize the value of  pT

2 Fp1 mentioned in Sec. 3.1, However, it is only 
an algebraic error that does not reflect the real geometric distances. Therefore, we creatively 
minimize the symmetrical epipolar distance (SED) [10] instead, which is a pixel-level metric 
and represents the distance from the pixel to its potential epipolar line, as shown in Fig. 1. The 
SED between image Ij and Ij+1 is defined as: 

1 2 2 2 2
1 2 1 2

SED( , , ) ( )
( ) ( ) ( ) ( )

T T
i i i i

j j i T T
i i i i i

q F p q F p
I I F

F p F p F q F q
σ+ = +

+ +
∑             (8) 

where F is the fundamental matrix between image Ij and Ij+1  and is computed by (1). 
ip  

and iq  are homogeneous coordinate representations of pixels pj∈Ij and qi∈Ij+1, and they are 
the projection pixels of the same 3D point on different images. For instance, 2( )i xF p  represents 
the square of the x-th entry of the vector iF p . { }0,1iσ ∈  is the weight of each pixel and will be 
set 1 if the SED of ground-truth poses is less than 4. The relative pose rather than the absolute 
pose will be paid more attention by our network when directly calculating the symmetrical 
epipolar distance between the estimated poses. In other words, our network will estimate 
accurate relative pose but is not tailored to absolute pose. To overcome it, we propose the cross 
symmetrical epipolar distance (CSED) to compute the fundamental matrix Fmn between the 
estimated and ground-truth poses, where m,n∈{p,t}, and m represent the pose of image Ij, n 
represents the pose of image Ij+1, p represents the estimated pose of EpiLoc and t represents 
the ground-truth pose. Note that Ftt is used to compute iσ .  The CSED is calculated by: 
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1 1 1 1CSED( , ) (SED( , , ) SED( , , ) SED( , , )) / 3j j j j pt j j tp j j ppI I I I F I I F I I F+ + + += + +    (9) 
Similar to the loss of pose, the epipolar loss with learnable weight ε  is defined as: 

1CSED( , )epi j jL I I e ε ε−
+= +                                           (10)  

The total loss consisting of the absolute pose loss Labs, the relative pose loss Lrel, and the 
epipolar geometry loss Lepi is defined as: 

total abs rel epiL L L L= + +                                                (11) 

4.4 EpiSingle: an extension for non-sequential training data 
To adapt the epipolar geometry to the discrete cases, we design EpiSingle to convert the error 
of a single image pose into the pixel projection error, with the architecture described in Fig. 2.  
The motivation behind this is that the epipolar geometry should map a certain pixel in the one 
image I (with an estimated pose) to the same location in itself (with a ground-truth pose). We 
formulate such property as a self-supervised constraint. The symmetrical epipolar distance is 
defined as: 

2 2
1 2

SED( , , )
( ) ( )

T
i i

i i i

p F p
I I F

F p F p
=

+
∑                                    (12) 

where  F is computed by the estimated and ground-truth pose of image I, and pi∈I. The 
self-supervised loss of EpiSingle is defined as: 

SED( , , )epiSL I I F e ε ε−= +                                            (13) 
With the self-supervised loss term above, the total loss of EpiSingle is defined as: 

total abs epiL L L= +                                                    (14) 

5. Experiments 
In this section, we show the implementation details, the datasets, and the comparative methods 
used in experiments. We then validate our proposed approach comparing with other 
competitors through extensive experiments in Sec. 5.2 and 5.3. Finally, we replace the DNN 
architecture with RVL [12] to show the generality of our method in Sec. 5.4. 

5.1 Implementation details 
We adopt PyTorch to implement our approaches on NVIDIA 2080, using Adam solver [17] 
with weight decay of 0.0005, fixed learning rate of 0.0001, dropout of 0.5, and batch size of 
20. The images are cropped to 341x256 and then normalized to have pixel intensities within 
[-1,1]. During the training on the RobotCar [20], we randomly color-disturbed the image to 
perform data augmentation, setting the brightness, contrast, and saturation to 0.7 and hue to 
0.5. The network of EpiLoc is initialized by the pretrained MapNet [3] for reducing the training 
time. β , 1γ , 2γ  and ε  are set to 0, 2, -3, 2. The optical flow between adjacent frames is 
estimated by Flownet2 [13] before training. All images are scaled to 256x256, and the 
camera’s internal parameters are scaled accordingly. 
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5.1.1 Datasets 
The 7Scenes dataset [25] is an RGB-D database captured at 640x480 resolution and consists 
of seven different small indoor office scenes, each less than 4 meters in the spatial extent. Each 
scene contains several sequences. The training and test sets of each scene are also provided. 
The corresponding ground truth camera poses were obtained by the KinectFusion system. The 
camera internal parameters (principal point (320,240), focal length (585,585)) were used in 
the KinectFusion pipeline. 

The Oxford RobotCar dataset [20] is a large-scale outdoor scene located in Oxford. The 
dataset contains complex variations, including weather, lighting, and dynamic objects, which 
makes RobotCar a difficult challenge in the relocalization task. We use the intermediate image 
at a resolution of 1280x960 captured by the stereo camera, and the corresponding ground truth 
poses are obtained by the inertial navigation system (INS). The camera’s internal parameters 
are calculated by the camera model provided by the dataset. We follow MapNet [3] and use 
two subsets (LOOP and FULL) of RobotCar. 

5.1.2 Comparative methods 
We compare EpiSingle with PoseNet [14],[15],[16] on 7Scenes [25]. To evaluate the 
performance of EpiLoc, we compare it to PoseNet15 [16], PoseNet16 [14], LSTM-Pose [30], 
Hourglass [22], PoseNet-17 [15], AtLoc [31], DSO [7], VidLoc [5], MapNet [3], LSG [34], 
PoseGan [40], Direct [41], AtLoc+ [31] on the indoor 7Scenes dataset [25], we use PoseNet 
[14],[15],[16], MapNet [3], LSG [34] and AtLoc [31] as the competing methods on the outdoor 
RobotCar dataset [20]. 

5.2 Experiments on 7Scenes 

5.2.1 The performance of EpiSingle 
For a fair comparison, we compare EpiSingle with PoseNet [14],[15],[16] in Table 1. The 
better performances of EpiSingle prove the effectiveness of pixel-level constraints. In 
particular, EpiSingle achieves a considerable performance gain in highly texture-repetitive 
(such as stairs) scenarios. EpiSingle narrows the median translation and rotation errors to 
0.21m and 7.89 respectively, outperforming PoseNet [14],[15],[16] by a large margin. 

 
Table 1. The performance comparison of EpiSingle on 7Scenes.  

For each scene, we report the median translation and rotation errors of PoseNet [14],[15],[16] and our 
EpiSingle on 7Scenes. The best results are highlighted. 

Methods Chess Fire Heads Office Pumpkin Kitchen Stairs Average 
PoseNet 

[14],[15],[16] 0.11m,4.29° 0.27m,12.2° 0.19m,12.1° 0.19m,6.36° 0.22m,5.06° 0.25m,5.27° 0.30m,11.3° 0.22m,8.08° 

EpiSingle 
(Ours) 0.11m,4.07° 0.27m,11.2° 0.17m,13.3° 0.19m,6.25° 0.22m,4.53° 0.25m,5.35° 0.27m,10.5° 0.21m,7.89° 

5.2.2 Comparison of EpiLoc and prior methods on 7Scenes 
Fig. 3 reports the cumulative distributions for each scene, which proves the better performance 
of our method. 

Table 2 shows the performance comparison between the single-image methods and our 
EpiLoc. Obviously, our method outperforms these baseline methods, because the lack of 
geometric information of these methods will bring high uncertainty.  

The localization results of the methods based on multiple images and our EpiLoc are 
summarized in Table 3. Our method is not specific to any particular environment, achieving 
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a considerable performance gain compared to MapNet [3], and slightly better than the state-
of-the-art method. MapNet [3] proposes a geometry-aware learning paradigm. LSG [34] 
introduces the convolutional LSTM [33] for an extra VO estimation and uses a soft attention 
mechanism to augment the features map. AtLoc+ [31] incorporates a self-attention mechanism 
and temporal constraint between image pairs. These are proved to be valid, but they use the 
coarse motion-geometry constraint, different from our EpiLoc which establishes the geometric 
relationship between pixels. A finer-grained geometric constraint helps our network to regress 
accurate and robust poses. 

 
Table 2. Camera localization results of EpiLoc and single-image methods on 7Scenes.  

For each scene, we compute the median translation and rotation errors of various single-image 
methods and our EpiLoc. The best results are highlighted. 

Methods Chess Fire Heads Office Pumpkin Kitchen Stairs Average 
PoseNet15 [16] 0.32m,6.60° 0.47m,14.0° 0.30m,12,2° 0.48m,7.24° 0.49m,8.12° 0.58m,8.34° 0.48m,13.1° 0.45m,9.94° 
PoseNet16 [14] 0.37m,7.24° 0.43m,13.7° 0.31m,12.0° 0.48m,8.04° 0.61m,7.08° 0.58m,7.54° 0.48m,13.1° 0.47m,9.81° 

LSTM [30] 0.24m,5.77° 0.34m,11.9° 0.21m,13.7° 0.30m,8.08° 0.33m,7.00° 0.37m,8.83° 0.40m,13.7° 0.31m,9.85° 
Hourglass [22] 0.15m,6.17° 0.27m,10.8° 0.19m,11.6° 0.21m,8.48° 0.25m,7.01° 0.27m,10.2° 0.29m,12.5° 0.23m,9.53° 
PoseNet17 [15] 0.13m,4.48° 0.27m,11.3° 0.17m,13.0° 0.19m,5.55° 0.26m,4.75° 0.23m,5.35° 0.35m,12.4° 0.23m,8.12° 
PoseGan [40] 0.09m,4.58° 0.24m,9.46° 0.17m,13.4° 0.19m,8.80° 0.16m,6.28° 0.26m,8.23° 0.28m,10.1° 0.20m,8.70° 
AtLoc [31] 0.10m,4.07° 0.25m,11.4° 0.16m,11.8° 0.17m,5.34° 0.21m,4.37° 0.23m,5.42° 0.26m,10.5° 0.20m,7.56° 
Direct [41] 0.10m,3.52° 0.27m,8.66° 0.17m,13.1° 0.16m,5.96° 0.19m,3.85° 0.22m,5.13° 0.32m,10.6° 0.20m,7.26° 

EpiLoc (Ours) 0.07m,2.71° 0.24m,9.18° 0.14m,12.6° 0.18m,4.45° 0.18m,3.22° 0.23m,4.60° 0.24m,11.0° 0.18m,6.82° 

 
Table 3. Camera localization results of EpiLoc and multi-image methods on 7Scenes.  

For each scene, we compute the median translation and rotation errors of various multi-image 
methods and EpiLoc. The best results are highlighted. 

Methods Chess Fire Heads Office Pumpkin Kitchen Stairs Average 
DSO [7] 0.17m,8.13° 0.19m,65.0° 0.61m,68.2° 1.51m,16.8° 0.61m,15.8° 0.23m,10.9° 0.26m,21.3° 0.26m,29.4° 

VidLoc [5] 0.18m,NA 0.26m,NA 0.14m,NA 0.26m,NA 0.36m,NA 0.31m,NA 0.26m,NA 0.25m,NA 
MapNet [3] 0.08m,3.25° 0.34m,11.9° 0.18m,13.3° 0.17m,5.15° 0.22m,4.02° 0.23m,4.93° 0.30m,12.1° 0.21m,7.77° 
LSG [34] 0.09m,3.28° 0.27m,10.8° 0.17m,12.7° 0.18m,5.45° 0.20m,3.69° 0.23m,4.92° 0.23m,11.3° 0.19m,7.47° 

AtLoc+ [31] 0.10m,3.18° 0.26m,10.8° 0.14m,11.4° 0.17m,5.16° 0.20m,3.94° 0.16m,4.90° 0.29m,10.2° 0.19m,7.08° 
EpiLoc (Ours) 0.07m,2.71° 0.24m,9.18° 0.14m,12.6° 0.18m,4.45° 0.18m,3.22° 0.23m,4.60° 0.24m,11.0° 0.18m,6.82° 

5.3 Experiments on Oxford RobotCar 

5.2.1 The quantitative comparison 
Table 4. Camera localization results on RobotCar.  

For each scene, we compute the mean translation / rotation errors of various methods and our EpiLoc. 
The best results are highlighted. 

Methods LOOP1 LOOP2 FULL1 FULL2 Average 
PoseNet 

[14],[15],[16] 10.6m,4.46° 11.4m,5.08° 42.0m,11.0° 60.1m,12.8° 31.0m,8.32° 

MapNet [3] 9.29m,4.34° 8.89m,4.07° 32.5m,8.61° 50.6m,10.8° 25.3m,6.95° 
LSG [34] 9.07m,3.31° 9.19m,3.53° 31.7m,4.51° 53.5m,8.60° 25.8m,4.99° 

AtLoc [31] 8.61m,4.58° 8.86m,4.67° 29.6m,12.4° 48.2m,11.1° 23.8m,8.19° 
EpiLoc (Ours) 8.09m,3.03° 8.48m,3.03° 16.2m,2.95° 38.2m,9.13° 17.8m,4.53° 

 
Table 4 shows the results of our EpiLoc and other competitive methods on RobotCar. 
Compared to the state-of-the-art AtLoc [31], EpiLoc reduces the translation error from 23.8m 
to 17.8m and the rotation error from 8.19°to 4.53°. The pixel-level epipolar geometry 
constraint helps our method achieve a considerable performance gain. 
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Fig. 3. The cumulative distributions of translation and rotation for each scene on 7Scenes.  

The first two rows are the translation error on chess, fire, heads, office, pumpkin, redkitchen 
respectively. The third and fourth rows are the rotation errors of the corresponding scene. The last row 

is the translation (left) and rotation (right) errors on stairs. The x-axis is the translation or rotation 
error and the y-axis is the accuracy, i.e. the percentage of frames whose localization error is less than 

the value. 
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5.2.1 The qualitative comparison 
Fig. 4 shows the predicted trajectory of the corresponding methods. Fig. 5 shows the 
cumulative distribution translation and rotation error of Pose-Net [14],[15],[16], MapNet [3], 
AtLoc [31], and our EpiLoc on LOOP1 and FULL1 scenes.  PoseNet [14],[15],[16] predicts 
the pose of images through a single image, which generates a large error. MapNet [3] achieves 
a more accurate pose through the motion constraint between image pairs. Self-attention is 
introduced to the AtLoc [31], forcing the network to focus on more geometrically robust 
objects and features. Our EpiLoc establishes a finer-grained geometric constraint and produces 
fewer outliers in outdoor LOOP and FULL scenes. 
 

 
(a) PoseNet  [14],[15],[16]       (b) MapNet [3]                (c) AtLoc [31]                      (d) Ours 
Fig. 4. The predicted trajectory on the LOOP1 (top), LOOP2 (middle) and FULL1 (bottom) of the 

RobotCar dataset.  
The red and black lines are the predicted and ground truth trajectory respectively. The black star 

represents the first frame. 
 

5.4 Generality study 
Our EpiLoc can also be applied to other networks to achieve better performance. RVL [12] 
proposes a prior guided dropout module and a composite self-attention module, which can 
guide the networks to ignore the dynamic objects. This helps RVL [12] achieve excellent 
results on the RobotCar dataset [20], which is a vehicle-mounted dataset with a large number 
of dynamic objects such as pedestrians, vehicles, etc. In this section, in order to further verify 
the validity of the pixel-level geometric constraint, we replace our vanilla DNN with the 
networks of RVL [12] and report their errors (Table 5) and cumulative distributions (Fig. 6) 
on the LOOP scene. Note that the split of the train/test sequences in RVL [12] is inconsistent 
with ours, which is the reason we did not directly compare it in the front. 
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Fig. 5. The cumulative distributions on RobotCar.  

We report the translation and rotation errors for LOOP1 (right), LOOP2 (middle) and FULL1 (left) 
scenes of the RobotCar dataset. The x-axis is the translation or rotation error and the y-axis is the 

accuracy, i.e. the percentage of frames whose localization error is less than the value. 
 

Table 5. Camera localization 
results on LOOP.  

We compute the mean translation 
/ rotation errors of RVL [12] 

with/without EpiLoc. The best 
results are highlighted. Note that 
we follow the split of train/test in 

RVL [12] to create the LOOP. 
Methods Median Mean 
RVL [12] 4.11m,1.56° 6.33m,2.70° 

RVL-EpiLoc 3.22m,1.14° 5.53m,2.21° 
 

 
Fig. 6. The cumulative distributions of RVL [12] and RVL-

EpiLoc. 

6. Conclusions 
Camera localization is a fundamental task in computer vision, which is widely used in many 
fields, such as augmented reality, robots and so on. We propose EpiLoc, which imposes a 
finer-grained geometric constraint on the network through the epipolar geometry and optical 
flow during training, and it achieves a considerable improvement. We also design EpiSingle 
for non-sequential images without access to the corresponding relationship of pixels, which 
further boosts the applicability of the epipolar geometry. Our proposed method can also be 
combined with other methods to achieve better results by replacing the network. Extensive 
experiments on both the 7Scenes and RobotCar datasets show the effectiveness of epipolar 
geometric constraints. 
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